UNIT INFORMATION

Program	Mechanical Sciences (53001010053P0)
Course unit	MICROSTRUCTURAL AND MECHANICAL CHARACTERIZATION TECHNIQUES
Unit code	PCMEC
Unit number	1978
Credit points	4
Period	
Professor	Alysson Martins Almeida Silva
Prerequisites	No
	UNIT OUTLINE
Objective:	
	Provide students with the theoretical and practical fundamentals of the main material characterization techniques, focusing on their applications in structural, chemical, thermal, and morphological analysis of different material classes.
Purpose:	

Contents:

1. Introduction to Material Characterization

- Importance of characterization in materials science
- Classification of analytical techniques: structural, chemical, thermal, and morphological
- Interpretation of results and correlation between techniques
- 2. Structural Characterization Techniques
 - X-ray Diffraction (XRD)
 - o Fundamentals of X-ray diffraction
 - Methods for identifying crystalline phases (Rietveld method)
 - o Applications in ceramics, metals, and polymers
 - Small-Angle X-ray Scattering (SAXS)
 - o Principles and applications in the analysis of nanostructured materials
- 3. Spectroscopic Techniques for Chemical Bond Identification
 - Fourier Transform Infrared Spectroscopy (FTIR)
 - o Fundamentals and vibrational modes
 - Sampling techniques: ATR, transmission, and reflection
 - X-ray Photoelectron Spectroscopy (XPS)
 - o Principles and applications in surface chemical composition analysis
- 4. Thermal Techniques for Studying Stability and Physicochemical Transformations
 - Thermal Analysis (TGA, DSC, DTA)
 - Thermogravimetric Analysis (TGA): thermal degradation and stability
 - Differential Scanning Calorimetry (DSC): phase transitions
- 5. Morphological and Microstructural Characterization Techniques
 - Scanning Electron Microscopy (SEM)
 - Image formation and contrast
 - Operating modes (SE, BSE, EDS)
 - X-ray Microtomography

 Principles and applications in the three-dimensional reconstruction of materials

6. Adsorption Techniques and Optical Spectroscopy

- Gas Adsorption (BET)
 - o Determination of surface area and pore size
- UV-Vis Spectroscopy
 - Fundamentals and applications in the analysis of optically active materials

7. Laboratory Practices (20 hours)

- Sample preparation for characterization
- Experimental analysis with XRD, FTIR, SEM, TGA/DSC, XPS, BET, and UV-Vis
- Interpretation and discussion of results

•

Assessment:

Obs.:

References:

- 1. Cullity, B. D., & Stock, S. R. (2014). Elements of X-ray Diffraction. Pearson.
- 2. Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of Instrumental Analysis. Cengage Learning.
- 3. Rouessac, F., & Rouessac, A. (2013). Chemical Analysis: Modern Instrumentation Methods and Techniques. Wiley.
- 4. Fultz, B., & Howe, J. M. (2012). Transmission Electron Microscopy and Diffractometry of Materials. Springer.